Fiscal Incidence Analysis in Theory and Practice

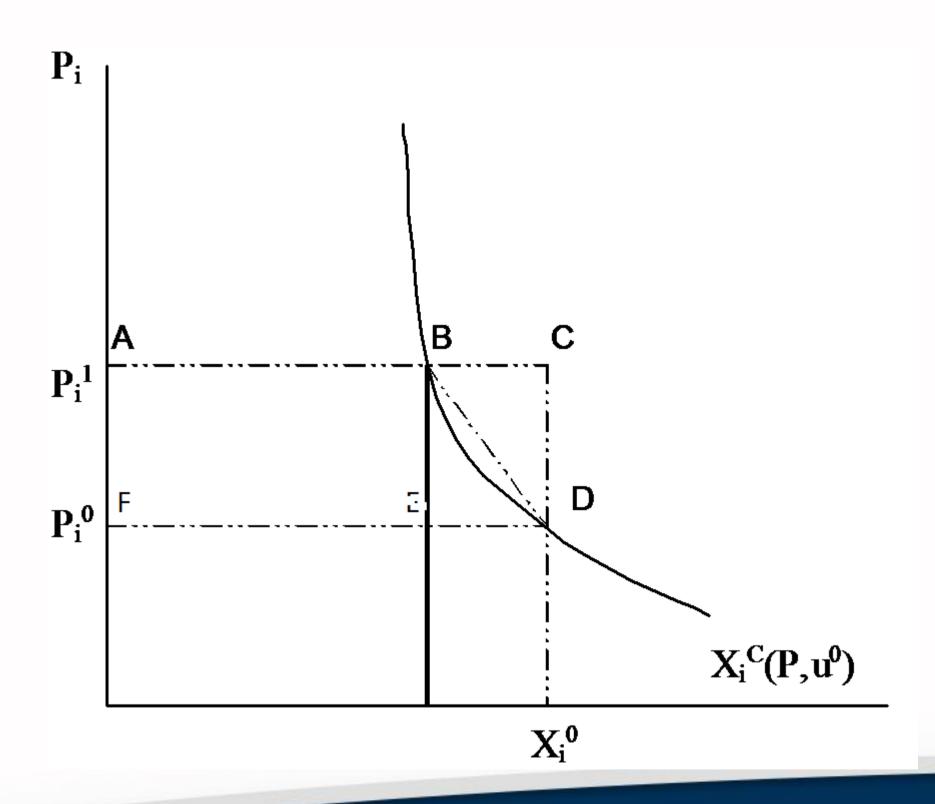
- × part the second,
- × in which Steve risks the opprobrium
- × of all present at the workshop on
- × The Distributional Impact of Fiscal Policy
 - × and excommunication from the
 - × American Economics Association
 - × Washington, DC − June 10-11, 2013

Incidence Analysis and (Some of) Its Critics

- Standard incidence analysis is *descriptive* of the average state of affairs; the status quo
- Real economists do more sophisticated analyses; all the things in Nora's fourth slide
 - Behavioral responses to policies
 - General equilibrium consequences of policies
 - Marginal, not average, incidence for policy analysis
- My assignment today is to discuss these
- My starting point is: sophistication is not worth it

Ignoring Behavioral Responses

- Consider an indirect tax or subsidy
- What is the value of that tax or subsidy to an individual?
- The compensating variation


$$CV = e(p^{1}, u^{0}) - e(p^{0}, u^{0}) = \int_{p_{0}}^{p_{1}} x_{i}^{c}(p, u^{0}) dp$$

$$CV \approx x_{i}^{c}(p^{0}, u^{0}) * \Delta p_{i} + \frac{1}{2} * \frac{\partial x_{i}^{c}(p^{0}, u^{0})}{\partial p_{i}} * \Delta p^{2} + \dots$$

Ignoring Behavioral Responses

• A picture may help:

How Bad is a First Order Approximation?

- Depends on the size of the price change
 - almost perfect for small (marginal) changes
- For larger changes, it depends on the elasticity
- most of the elasticities that concern us will be small-ish
 - labor supply (for income taxes)
 - demand for food vs. non-food for a typical VAT
 - demand for education or health care
 - even most excises get levied on single goods with inelastic demand alcohol, tobacco, petroleum products

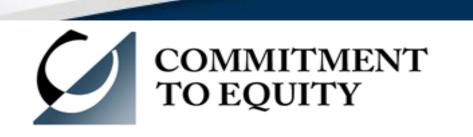
Quintile Shares of Marginal Benefits to Secondary Schooling in Rural Peru

	CV, price change	$\partial \text{Prob}/\partial P$	Std BI, 0/1
Quintile			
1	0.13	0.15	0.10
	(0.010)	(0.010)	(0.014)
2	0.18	0.20	0.17
	(0.011)	(0.011)	(0.016)
3	0.21	0.22	0.23
	(0.012)	(0.012)	(0.019)
4	0.24	0.24	0.24
	(0.013)	(0.012)	(0.020)
5	0.24	0.20	0.26
	(0.015)	(0.012)	(0.022)

How Bad is a First Order Approximation- Take Two

- Most inequality measures use shares of income
- That means that any proportional error we make cancels out
- Look at the figure again: the second-order approximation is proportional to the first-order one
- caveats
 - This would not be true for *poverty* measures
 - Nor does it help for aggregations of several taxes or benefits
 - Heterogeneous demand elasticities

Summary on Behavioral Responses

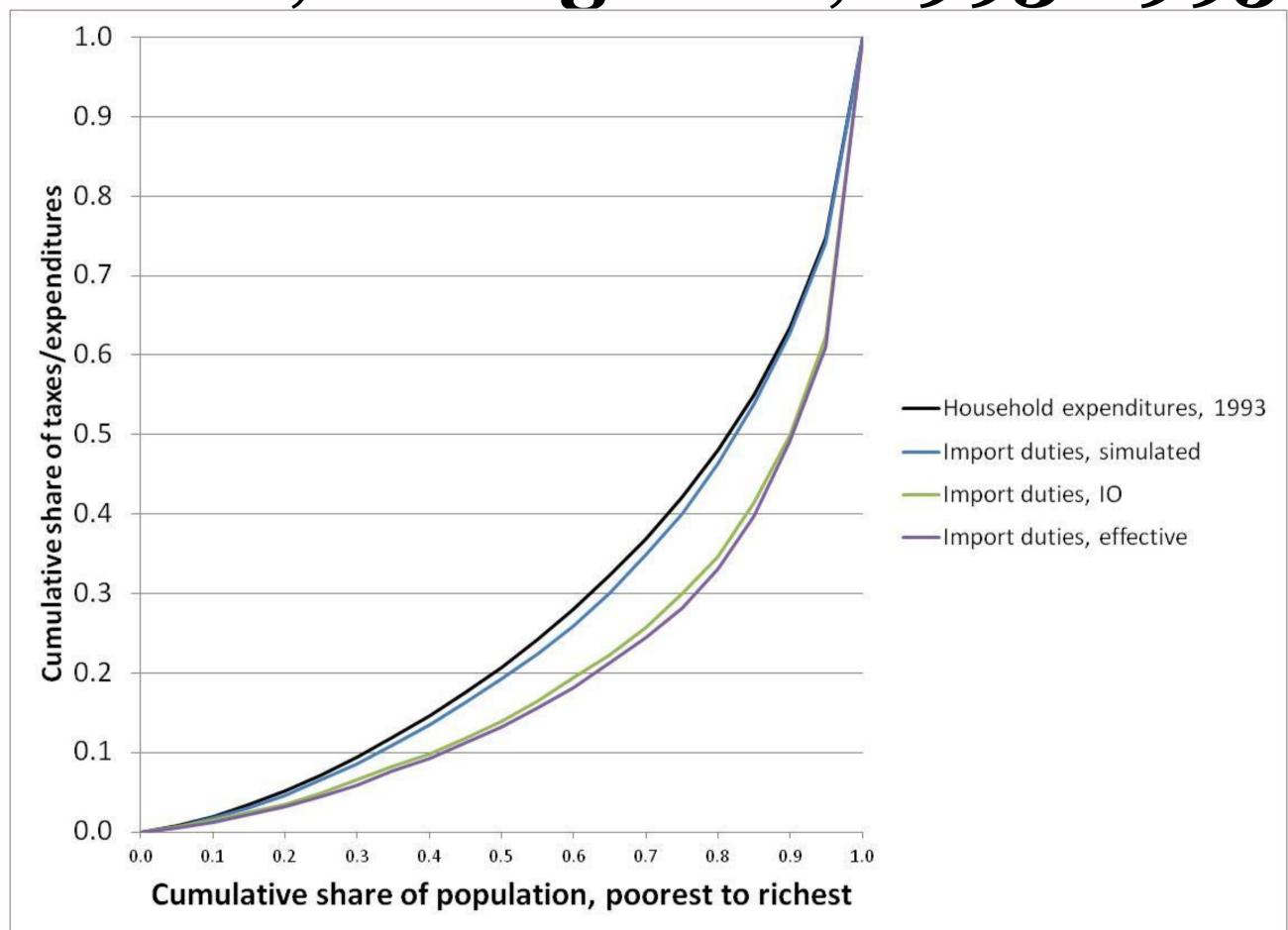

- Taking them into account when valuing taxes/subsidies is difficult requires demand estimation, at least
- For our project, the estimation approach and data would need to be similar
- The first-order approximation of a standard incidence analysis is much easier in general, and easier to make comparable across countries
- In most cases, it will be good enough

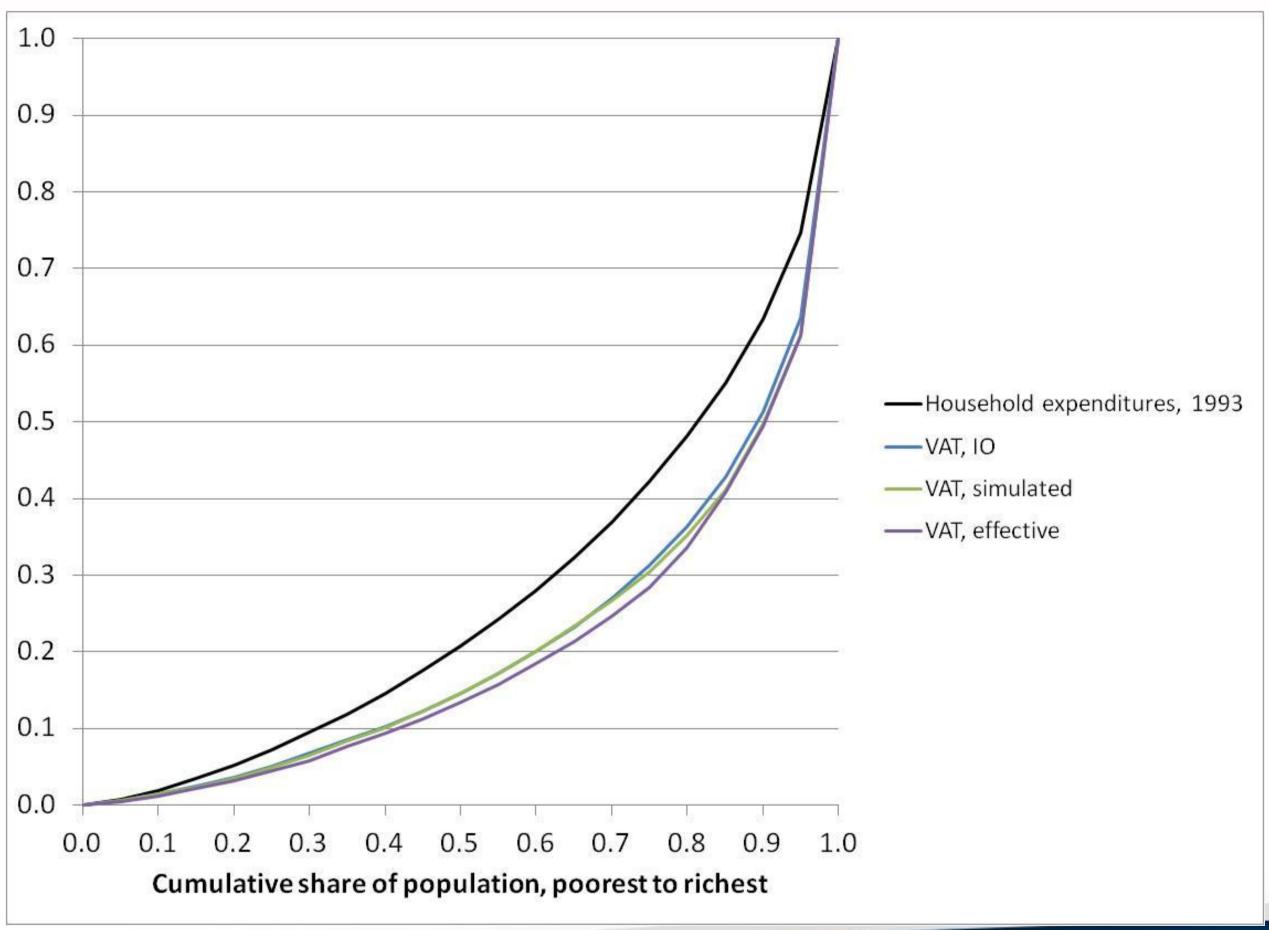
Ignoring General Equilibrium Effects

- Here, the idea is that a tax or subsidy on one good spills over to other markets, changing those prices, too
- So we need to calculate a set of compensating variations, one for each changing price, and add them up
- Here, I have to hang my hat on small elasticities
- That implies small spillovers

Well, OK, Here's an Example

- Taxes that fall on intermediate goods
- e.g. petroleum excises and, in some countries, import duties
- In such cases, looking at final consumption only could be misleading. Need to trace the effects through the input-output structure of the economy
- We tried this in Madagascar
 - Using only IO table, not behavioral responses (as in a CGE)
 - made a large difference in incidence estimates for petroleum excises but no other taxes
- Was not easy, and is still much simpler than a CGE


Concentration Curves for Petroleum Excises, Madagascar, 1993-1995


Concentration Curves for Import Duties, Madagascar, 1993-1995

Concentration Curves for VAT, Madagascar, 1993-1995

Summary on General Equilibrium Effects

- Trying to account for these in a comprehensive way requires a CGE. That's hard.
- I remain to be convinced that it is worth the effort ...
- ... except that I do believe that these can change our valuation of the benefits/costs of taxes on intermediate goods
- Could/should our project account for that?
 - Import duties are certainly important in some poorer economies
 - Would need to have an IO table, and probably need to modify it with respect to the petroleum sector, tobacco, and alcohol

Average vs. Marginal Incidence

- Incidence analysis describes the status quo
 - We assign the benefits of schooling to those we see in school
 - We assign the costs of VAT to those we see consuming goods
- That is perfectly appropriate if the goal is to assess the distributional impact of the fisc, as CEQ does
- But most policy analysis makes more sense in terms of *marginal* changes:
 - increase VAT rate from 15% to 16%
 - increase vaccination rates from 90% to 95%

Average vs. Marginal Incidence

- Critics argue that this marginal incidence may be quite different from the observed average incidence
- This is most obvious in the case of public services that are only consumed once
 - Vaccinations
 - School attendance
 - Connections to the water or sewer mains
- Here, the existing beneficiaries that we observe in a survey are a poor guide to the marginal beneficiaries from a change in service provision
- So the simple descriptive methods won't do
- We seem to need demand analysis ...

Average vs. Marginal Incidence

- ... or maybe not
- the "average" incidence is actually the intensive margin
- For example:
 - who benefits from a program to build new latrines in all the primary schools?
 - who benefits from adding a lab to all health clinics?
 - who loses from marginal increase in the VAT rate?
- Even for some extensive margins, we may be able to get away with simple descriptive methods
 - a program to build secondary schools in all towns that do not currently have one

Summary

- Traditional incidence methods are economically unsophisticated
- But moving beyond them requires considerably effort
 - Estimating demand systems
 - Building general equilibrium models
- There is a real opportunity cost to those efforts
- For the most part, I am not convinced that it's worth it
- A challenge to the real economists: give us examples where I'm wrong

